Интересное / Непознанное / Наука

Физика невозможного: Защитное силовое поле

1
Физика невозможного: Защитное силовое поле

Защитное силовое поле
«Поднять щиты!» — так звучит первый приказ, который в бес­конечном сериале «Звездный путь» отдает резким голосом ка­питан Кирк своему экипажу; послушный приказу экипаж вклю­чает силовые поля, призванные защитить космический корабль «Энтерпрайз» от огня противника.

В сюжете «Звездного пути» силовые поля настолько важ­ны, что их состояние вполне может определить исход сра­жения. Стоит энергии силового поля истощиться, и корпус «Энтерпрайза» начинает получать удары, чем дальше, тем со­крушительнее; в конце концов поражение становится неиз­бежным.

Так что же такое защитное силовое поле? В научной фан­тастике это обманчиво простая штука: тонкий невидимый, но при этом непроницаемый барьер, способный одинаково легко отражать лазерные лучи и ракеты. На первый взгляд силовое поле представляется настолько простым, что создание — и скорое — боевых щитов на его основе кажется неминуемым. Так и ждешь, что не сегодня-завтра какой-нибудь предприимчивый изобретатель объявит, что ему удалось получить защитное си­ловое поле. Но истина гораздо сложнее.

Подобно лампочке Эдисона, которая коренным образом изменила современную цивилизацию, силовое поле способно глубоко затронуть все без исключения стороны нашей жизни. Военные воспользовались бы силовым полем, чтобы стать не­уязвимыми, создали бы на его основе непроницаемый щит от вражеских ракет и пуль. В теории можно было бы создавать мосты, великолепные шоссе и дороги одним нажатием кнопки. Целые города возникали бы в пустыне словно по мановению волшебной палочки; все в них, вплоть до небоскребов, строи­лось бы исключительно из силовых полей. Купола силовых по­лей над городами позволили бы их обитателям произвольно управлять погодными явлениями — штормовыми ветрами, снежными бурями, торнадо. Под надежным пологом силово­го поля можно было бы строить города даже на дне океанов. От стекла, стали и бетона можно было бы вообще отказаться, заменив все строительные материалы силовыми полями.

Но, как ни странно, силовое поле оказывается одним из тех явлений, которые чрезвычайно сложно воспроизвести в ла­боратории. Некоторые физики даже полагают, что это вообще не удастся сделать без изменения его свойств.
Майкл Фарадей

Концепция физического поля берет начало в работах великого британского ученого XIX в. Майкла Фарадея.

Родители Фарадея принадлежали к рабочему классу (его отец был кузнецом). Сам он в начале 1800-х гг. состоял в подмастерьях у переплетчика и влачил достаточно жалкое существование. Но юный Фарадей был зачарован недавним гигантским прорывом в науке — открытием таинственных свойств двух новых сил, электричества и магнетизма. Он жадно поглощал всю доступную ему информацию по этим вопросам и посещал лекции профессора Хамфри Дэви из Королевского ин­ститута в Лондоне.

Однажды профессор Дэви серьезно повредил глаза во время неудачного химического эксперимента; понадобился секретарь, и он взял на эту должность Фарадея. Постепенно молодой человек завоевал доверие ученых Королевского института и получил воз­можность проводить собственные важные эксперименты, хотя нередко ему приходилось терпеть и пренебрежительное отноше­ние. С годами профессор Дэви все ревнивее относился к успехам своего талантливого молодого помощника, который поначалу считался в кругах экспериментаторов восходящей звездой, а со временем затмил славу самого Дэви. Только после смерти Дэви в 1829 г. Фарадей получил научную свободу и осуществил целую серию поразительных открытий. Результатом их стало создание электрических генераторов, обеспечивших энергией целые горо­да и изменивших ход мировой цивилизации.

Ключом к величайшим открытиям Фарадея стали сило­вые, или физические, поля. Если поместить железные опилки над магнитом и встряхнуть, выяснится, что опилки укладыва­ются в рисунок, напоминающий паутину и занимающий все пространство вокруг магнита. «Нити паутины» — это и есть фарадеевы силовые линии. Они наглядно показывают, как рас­пределяются в пространстве электрическое и магнитное поля. К примеру, если изобразить графически магнитное поле Земли, то обнаружится, что линии исходят откуда-то из области Север­ного полюса, а затем возвращаются и снова уходят в землю в области Южного полюса. Аналогично, если изобразить сило­вые линии электрического поля молнии во время грозы, выяс­нится, что они сходятся на кончике молнии.

Пустое пространство для Фарадея вовсе не было пустым; оно было заполнено силовыми линиями, при помощи кото­рых можно было заставить отдаленные предметы двигаться.

(Бедная юность не позволила Фарадею получить систематиче­ское образование, и он практически не разбирался в математи­ке; вследствие этого его записные книжки были заполнены не уравнениями и формулами, а нарисованными от руки диаграм­мами силовых линий. По иронии судьбы именно недостаток математического образования заставил его разработать вели­колепные диаграммы силовых линий, которые сегодня можно увидеть в любом учебнике физики. Физическая картина в науке нередко более важна, чем математический аппарат, который используется для ее описания.)

Историки выдвинули немало предположений о том, что именно привело Фарадея к открытию физических полей — одного из важнейших понятий в истории всей мировой науки. Фактически вся без исключения современная физика написа­на на языке фарадеевых полей. В 1831 г. Фарадей совершил ключевое открытие в области физических полей, навсегда из­менившее нашу цивилизацию. Однажды, пронося магнит — детскую игрушку — над проволочной рамкой, он заметил, что в рамке возникает электрический ток, хотя магнит с ней не соприкасается. Это означало, что невидимое поле магнита способно на расстоянии заставить электроны двигаться, соз­давая ток.

Силовые поля Фарадея, которые до этого момента счита­лись бесполезными картинками, плодом досужей фантазии, оказались реальной материальной силой, способной двигать объекты и генерировать энергию. Сегодня можно сказать на­верняка: источник света, которым вы пользуетесь, чтобы про­честь эту страницу, получает энергию благодаря открытиям Фарадея в области электромагнетизма. Вращающийся магнит создает поле, которое толкает электроны в проводнике и за­ставляет их двигаться, рождая электрический ток, который за­тем можно использовать для питания лампочки. На этом прин­ципе основаны генераторы электричества, обеспечивающие энергией города всего мира. К примеру, поток воды, падающий с плотины, заставляет вращаться гигантский магнит в турбине; магнит толкает электроны в проводе, формируя электрический ток; ток, в свою очередь, течет по высоковольтным проводам в наши дома.

Другими словами, силовые поля Майкла Фарадея и есть те самые силы, что движут современной цивилизацией, всеми ее проявлениями — от электровозов до новейших вычислитель­ных систем, Интернета и карманных компьютеров.

Полтора столетия фарадеевы физические поля вдохнов­ляли физиков на дальнейшие исследования. На Эйнштейна, к примеру, они оказали такое сильное воздействие, что он сформулировал свою теорию гравитации на языке физических полей. На меня тоже работы Фарадея произвели сильнейшее впечатление. Несколько лет назад я успешно сформулировал теорию струн в терминах физических полей Фарадея, заложив таким образом фундамент для полевой теории струн. В физике сказать про кого-то, что он мыслит силовыми линиями, означа­ет сделать этому человеку серьезный комплимент.
Четыре фундаментальных взаимодействия

Одним из величайших достижений физики за последние два тысячелетия стало выделение и определение четырех видов взаимодействия, которые правят вселенной. Все они могут быть описаны на языке полей, которым мы обязаны Фарадею. К несчастью, однако, ни один из четырех видов не обладает в полной мере свойствами силовых полей, описанных в боль­шинстве фантастических произведений. Перечислим эти виды взаимодействия.

1. Гравитация. Безмолвная сила, не позволяющая нашим ногам оторваться от опоры. Она не дает рассы­паться Земле и звездам, помогает сохранить целост­ность Солнечной системы и Галактики. Без гравитации вращение планеты вышвырнуло бы нас с Земли в космос со скоростью 1000 миль в час. Проблема в том, что свойства гравитации в точности противо­положны свойствам фантастических силовых полей. Гравитация — сила притяжения, а не отталкивания; она чрезвычайно слаба — относительно, разумеется; она работает на громадных, астрономических расстоя­ниях. Другими словами, являет собой почти полную противоположность плоскому, тонкому, непроницае­мому барьеру, который можно встретить едва ли не в любом фантастическом романе или фильме. К приме­ру, перышко к полу притягивает целая планета — Зем­ля, но мы легко можем преодолеть притяжение Земли и поднять перышко одним пальцем. Воздействие одного нашего пальца способно преодолеть силу притяжения целой планеты, которая весит больше шести триллио­нов килограммов.

2. Электромагнетизм (ЭМ). Сила, освещающая наши города. Лазеры, радио, телевидение, современная электроника, компьютеры, Интернет, электричество, магнетизм — все это следствия проявления электро­магнитного взаимодействия. Возможно, это самая по­лезная сила, которую удалось обуздать человечеству на протяжении всей его истории. В отличие от гравитации она может работать и на притяжение, и на отталкива­ние. Однако и она не годится на роль силового поля по нескольким причинам. Во-первых, ее можно легко нейтрализовать. К примеру, пластик или любой другой непроводящий материал без труда проникнет в мощ­ное электрическое или магнитное поле. Кусок пласти­ка, брошенный в магнитное поле, свободно пролетит его насквозь. Во-вторых, электромагнетизм действует на больших расстояниях, его непросто сосредоточить в плоскости. Законы ЭМ-взаимодействия описываются уравнениями Джеймса Клерка Максвелла, и похоже, силовые поля не являются решением этих уравнений.

3 и 4. Сильные и слабые ядерные взаимодействия. Слабое взаимодействие — это сила радиоактивно­го распада, та, что разогревает радиоактивное ядро Земли. Эта сила стоит за извержениями вулканов, зем­летрясениями и дрейфом континентальных плит. Силь­ное взаимодействие не дает рассыпаться ядрам атомов; оно обеспечивает энергией солнце и звезды и отвечает за освещение Вселенной. Проблема в том, что ядерное взаимодействие работает только на очень маленьких расстояниях, в основном в пределах атомного ядра. Оно так прочно связано со свойствами самого ядра, что управлять им чрезвычайно трудно. В настоящее время нам известно только два способа влиять на это взаимо­действие: мы можем разбить субатомную частицу на части в ускорителе или взорвать атомную бомбу.

Хотя защитные поля в научной фантастике и не подчиня­ются известным законам физики, все же существуют лазейки, которые в будущем, вероятно, сделают создание силового поля возможным. Во-первых, существует, возможно, пятый вид фун­даментального взаимодействия, который никому до сих пор не удалось увидеть в лаборатории. Может оказаться, к примеру, что это взаимодействие работает только на расстояниях от не­скольких дюймов до фута — а не на астрономических расстоя­ниях. (Правда, первые попытки обнаружить пятый вид взаимо­действия дали отрицательные результаты.)

Во-вторых, нам, возможно, удастся заставить плазму ими­тировать некоторые свойства силового поля. Плазма — это «четвертое состояние вещества». Три первые, привычные нам состояния вещества, — твердое, жидкое и газообразное; тем не менее самой распространенной формой вещества во вселенной является плазма: газ, состоящий из ионизированных атомов. Атомы в плазме не связаны между собой и лишены электро­нов, а потому обладают электрическим зарядом. Ими можно без труда управлять при помощи электрического и магнитного полей.

Видимое вещество вселенной существует по большей ча­сти в форме различного рода плазмы; из нее образованы солн­це, звезды и межзвездный газ. В обычной жизни мы почти не сталкиваемся с плазмой, потому что на Земле это явление редкое; тем не менее плазму можно увидеть. Для этого доста­точно взглянуть на молнию, солнце или экран плазменного телевизора.
Плазменные окна

Как уже отмечалось выше, если нагреть газ до достаточно вы­сокой температуры и получить таким образом плазму, то при помощи магнитного и электрического полей можно будет ее удерживать и придавать ей форму. К примеру, плазме можно придать форму листа или оконного стекла. Более того, такое «плазменное окно» можно использовать в качестве перегород­ки между вакуумом и обычным воздухом. В принципе, таким образом можно было бы удерживать воздух внутри космическо­го корабля, не давая ему улетучиться в пространство; плазма в этом случае образует удобную прозрачную оболочку, границу между открытым космосом и кораблем.

В сериале «Звездный путь» силовое поле используется, в частности, для того, чтобы изолировать отсек, где находится и откуда стартует небольшой космический челнок, от космиче­ского пространства. И это не просто хитрая уловка, призванная сэкономить деньги на декорациях; такая прозрачная невиди­мая пленка может быть создана.

Плазменное окно придумал в 1995 г. физик Эди Гершкович в Брукхейвенской национальной лаборатории (Лонг-Айленд, штат Нью-Йорк). Это устройство было разработано в процессе решения другой задачи — задачи сварки металлов при помощи электронного луча. Ацетиленовая горелка сварщика плавит ме­талл потоком раскаленного газа, а затем уже соединяет куски металла воедино. При этом известно, что пучок электронов спо­собен сваривать металлы быстрее, чище и дешевле, чем полу­чается при обычных методах сварки. Главная проблема метода электронной сварки состоит в том, что осуществлять ее необхо­димо в вакууме. Это требование создает большие неудобства, поскольку означает сооружение вакуумной камеры — разме­ром, возможно, с целую комнату.

Для решения этой проблемы д-р Гершкович изобрел плаз­менное окно. Это устройство размером всего 3 фута в высоту и 1 фут в диаметре; оно нагревает газ до температуры 6500 °С и тем самым создает плазму, которая сразу же попадает в ловуш­ку электрического и магнитного полей. Частицы плазмы, как частицы любого газа, оказывают давление, которое не дает воз­духу ворваться и заполнить собой вакуумную камеру. (Если ис­пользовать в плазменном окне аргон, он испускает голубоватое свечение, совсем как силовое поле в «Звездном пути».)

Плазменное окно, очевидно, найдет широкое применение в космической отрасли и промышленности. Даже в промыш­ленности для микрообработки и сухого травления часто необ­ходим вакуум, но применение его в производственном процес­се может оказаться очень дорогим. Но теперь, с изобретением плазменного окна, удерживать вакуум одним нажатием кнопки станет несложно и недорого.

Но можно ли использовать плазменное окно как непрони­цаемый щит? Защитит ли оно от выстрела из пушки? Можно вообразить появление в будущем плазменных окон, обладаю­щих гораздо большей энергией и температурой, достаточной для испарения попадающих в него объектов. Но для создания более реалистичного силового поля с известными по фанта­стическим произведениям характеристиками потребуется многослойная комбинация нескольких технологий. Возможно, каждый слой сам по себе не будет достаточно прочным, чтобы остановить пушечное ядро, но вместе нескольких слоев может оказаться достаточно.

Попробуем представить себе структуру такого силового поля. Внешний слой, к примеру сверхзаряженное плазменное окно, разогретое до температуры, достаточной для испарения металлов. Вторым слоем может оказаться завеса из высоко­энергетических лазерных лучей. Такая завеса из тысяч перекре­щивающихся лазерных лучей создавала бы пространственную решетку, которая нагревала бы проходящие через нее объекты и эффективно испаряла их. Более подробно мы поговорим о ла­зерах в следующей главе.

Далее, за лазерной завесой, можно вообразить себе про­странственную решетку из «углеродных нанотрубок» — кро­хотных трубочек, состоящих из отдельных атомов углерода, со стенками толщиной в один атом. Таким трубки во много раз прочнее стали. На данный момент самая длинная из получен­ных в мире углеродных нанотрубок имеет длину всего около 15 мм, но можно уже предвидеть день, когда мы сможем созда­вать углеродные нанотрубки произвольной длины. Предполо­жим, что из углеродных нанотрубок можно будет сплести про­странственную сеть; в этом случае мы получим чрезвычайно прочный экран, способный отразить большинство объектов. Экран этот будет невидим, так как каждая отдельная нанотрубка по толщине сравнима с атомом, но пространственная сеть из углеродных нанотрубок превзойдет по прочности любой другой материал.

Итак, мы имеем основания предположить, что сочетание плазменного окна, лазерной завесы и экрана из углеродных нанотрубок может послужить основой для создания почти не­проницаемой невидимой стены.

Но даже такой многослойный щит будет не в состоянии продемонстрировать все свойства, которые научная фанта­стика приписывает силовому полю. Так, он будет прозрачен, а значит, не сможет остановить лазерный луч. В битве с приме­нением лазерных пушек наши многослойные щиты окажутся бесполезными.

Чтобы остановить лазерный луч, щит должен будет кро­ме перечисленного обладать сильно выраженным свойством «фотохроматичности», или переменной прозрачности. В на­стоящее время материалы с такими характеристиками ис­пользуются при изготовлении солнечных очков, способных затемняться при воздействии УФ-излучения. Переменная прозрачность материала достигается за счет использования молекул, которые могут существовать по крайней мере в двух состояниях. При одном состоянии молекул такой матери­ал прозрачен. Но под воздействием УФ-излучения молекулы мгновенно переходят в другое состояние и материал теряет прозрачность.

Возможно, когда-нибудь мы сможем при помощи нанотехнологии получить вещество, прочное, как углеродные нанотрубки, и способное менять свои оптические свойства под воз­действием лазерного луча. Щит из такого вещества сможет останавливать не только потоки частиц или орудийные снаряды, но и лазерный удар. В настоящее время, однако, не существует материалов с переменной прозрачностью, способных остано­вить лазерный луч.
Магнитная левитация

В научной фантастике силовые поля выполняют еще одну функ­цию, кроме отражения ударов из лучевого оружия, а именно служат опорой, которая позволяет преодолевать силу притя­жения. В фильме «Назад в будущее» Майкл Фокс катается на «ховерборде», или «парящей доске»; эта штука во всем напоми­нает привычный скейтборд, вот только «ездит» по воздуху, над поверхностью земли. Физические законы — такие, какими мы их знаем на сегодняшний день, — не позволяют реализовать подобное подобное антигравитационное устройство (как мы увидим в главе 10). Но можно представить себе в будущем создание других устройств — парящих досок и парящих автомобилей на магнитной подушке; эти машины позволят нам без труда поднимать и удерживать на весу крупные объекты. В будущем, если «сверхпроводимость при комнатной температуре» станет доступной реальностью, человек сможет поднимать в воздух предметы, используя возможности магнитных полей.

Если мы поднесем северный полюс постоянного магнита к северному же полюсу другого такого же магнита, магниты будут отталкиваться друг от друга. (Если мы перевернем один из магнитов и поднесем его южным полюсом к северному полюсу другого, два магнита будут притягиваться.) Этот же принцип — то, что одноименные полюса магнитов отталкиваются, — можно использовать для подъема с земли огромных тяжестей. Уже сейчас в нескольких странах идет строительство технически передовых поездов на магнитной подвеске. Такие поезда проносятся не по путям, а над ними на минимальном расстоянии; на весу их удерживают обычные магниты. Поезда как бы парят в воздухе и могут благодаря нулевому трению развивать рекордные скорости.

Первая в мире коммерческая автоматизированная транспортная система на магнитной подвеске была запущена в действие в 1984 г. в британском городе Бирмингеме. Она соединила терминал международного аэропорта и расположенный неподалеку железнодорожный вокзал. Поезда на магнитной подвеске действуют также в Германии, Японии и Корее, хотя большинство из них не предназначены для высоких скоростей. Первый скоростной коммерческий поезд на магнитной подвеске начал ходить по запущенному в действие участку трассы в Шанхае; этот поезд движется по трассе со скоростью до 431 км/ч. Японский поезд на магнитной подвеске в префектуре Яманаси разогнался до скорости 581 км/ч — т. е. двигался значительно быстрее, чем обычные поезда на колесах.

Но устройства на магнитной подвеске чрезвычайно дороги. Один из путей к увеличению их эффективности — использование сверхпроводников, которые при охлаждении до температур, близких к абсолютному нулю, полностью теряют электрическое сопротивление. Явление сверхпроводимости открыл в 1911 г. Хейке Камерлинг-Оннес. Суть его состояла в том, что некоторые вещества при охлаждении до температуры ниже 20 К (20° выше абсолютного нуля) теряют всякое электрическое сопротивление. Как правило, при охлаждении металла его электрическое сопротивление постепенно уменьшается. {Дело в том, что направленному движению электронов в проводнике мешают случайные колебания атомов. При уменьшении температуры размах случайных колебаний уменьшается, и электричество испытывает меньшее сопротивление.) Но Камерлинг-Оннес, к собственному изумлению, обнаружил, что сопротивление некоторых материалов при определенной критической температуре резко падает до нуля.

Физики сразу поняли важность полученного результата. При передаче на большие расстояния в линиях электропередачи теряется значительное количество электроэнергии. Но если бы сопротивление удалось устранить, электроэнергию можно было бы передавать в любое место почти даром. Вообще, возбужденный в замкнутом контуре электрический ток мог бы циркулировать в нем без потерь энергии миллионы лет. Более того, из этих необычайных токов несложно было бы создать магниты невероятной мощности. А имея такие магниты, можно было бы без усилий поднимать громадные грузы.

Несмотря на чудесные возможности сверхпроводников, применять их очень непросто. Держать большие магниты в баках с чрезвычайно холодными жидкостями очень дорого. Чтобы сохранять жидкости холодными, потребуются громадные фабрики холода, которые поднимут стоимость сверхпроводящих магнитов до заоблачных высот и сделают их использование невыгодным.

Но однажды физикам, возможно, удастся создать вещество, которое сохранит сверхпроводящие свойства даже при нагреве до комнатной температуры. Сверхпроводимость при комнатной температуре — «святой Грааль» физиков-твердотельщиков. Получение таких веществ, по всей вероятности, послужит началом второй промышленной революции. Мощные магнитные поля, способные удерживать на весу машины и поезда, станут настолько дешевыми, что даже «планирующие автомобили», возможно, окажутся экономически выгодными. Очень может быть, что с изобретением сверх-проводников, сохраняющих свои свойства при комнатной температуре, фантастические летающие машины, которые мы видим в фильмах «Назад в будущее», «Особое мнение» и «Звездные войны», станут реальностью.

В принципе вполне пред ставимо, что человек сможет надевать специальный пояс из сверхпроводящих магнитов, который позволит ему свободно левитировать над землей. С таким поясом можно было бы летать по воздуху, подобно Супермену. Вообще, сверхпроводимость при комнатной температуре явление настолько замечательное, что изобретение и использование таких сверхпроводников описано во множестве научно-фантастических романов (таких, как серия романов про Мир-Кольцо, созданная Ларри Нивеном в 1970 г.).

Десятки лет физики безуспешно искали вещества, которые обладали бы сверхпроводимостью при комнатной температуре. Это был утомительный скучный процесс — искали методом проб и ошибок, испытывая один материал за другим. Но в 1986 г. был открыт новый класс веществ, получивших название «высокотемпературные сверхпроводники»; эти вещества обретали сверхпроводимость при температурах порядка 90° выше абсолютного нуля, или 90 К. Это открытие стало настоящей сенсацией в мире физики. Казалось, распахнулись ворота шлюза. Месяц за месяцем физики соревновались друг с другом, стремясь установить новый мировой рекорд сверхпроводимости. Какое-то время даже казалось, что сверхпроводимость при комнатной температуре вот-вот сойдет со страниц научно-фантастических романов и станет реальностью. Но после нескольких лет бурного развития исследования в области высокотемпературных сверхпроводников начали замедляться.

В настоящее время мировой рекорд для высокотемпературных сверхпроводников принадлежит веществу, представляющему собой сложный оксид меди, кальция, бария, таллия и ртути, которое становится сверхпроводящим при 138 К (-135 °С). Эта относительно высокая температура все еще очень далека от комнатной. Но и это—важный рубеж. Азот становится жидким при температуре 77 К, а жидкий азот стоит примерно столько же, сколько обычное молоко. Поэтому для охлаждения высокотемпературных сверхпроводников можно использовать обычный жидкий азот, это недорого. (Разумеется, сверхпроводники, остающиеся таковыми и при комнатной температуре, совсем не потребуют охлаждения.)

Неприятно другое. В настоящее время не существует теории, которая объясняла бы свойства высокотемпературных сверхпроводников. Более того, предприимчивого физика, который сумеет объяснить, как они работают, ждет Нобелевская премия. (В известных высокотемпературных сверхпроводниках атомы организованы в четко выраженные слои. Многие физики предполагают, что именно слоистость керамического материала дает возможность электронам свободно передвигаться внутри каждого слоя, создавая таким образом сверхпроводимость. Но как именно и почему это происходит — по-прежнему загадка.)

Недостаток знаний вынуждает физиков искать новые высокотемпературные сверхпроводники по старинке, методом проб и ошибок. Это означает, что пресловутая сверхпроводимость при комнатной температуре может быть открыта когда угодно—завтра, через год, или вообще никогда. Никто не знает, когда будет найдено вещество с такими свойствами и будет ли оно найдено вообще.

Но если сверхпроводники при комнатной температуре будут открыты, их открытие, скорее всего, породит громадную волну новых изобретений и коммерческих приложений. Обычными, возможно, станут магнитные поля, в миллион раз более сильные, чем магнитное поле Земли (которое составляет 0,5 Гс).

Одно из свойств, присущих всем сверхпроводникам, носит название эффекта Мейснера. Если поместить магнит над сверхпроводником, магнит зависнет в воздухе, как будто поддерживаемый некой невидимой силой. [Причина эффекта Мейснера заключается в том, что магнит обладает свойством создавать внутри сверхпроводника собственное «зеркальное отражение», так что настоящий магнит и его отражение начинают отталкиваться друг от друга. Еще одно наглядное объяснение этого эффекта — в том, что сверхпроводник непроницаем для магнитного поля. Он как бы выталкивает магнитное поле. Поэтому, если поместить магнит над сверхпроводником, силовые линии магнита при контакте со сверхпроводником исказятся. Эти силовые линии и будут выталкивать магнит вверх, заставляя его левитировать.)

Если человечество получит возможность использовать эффект Мейснера, то можно вообразить шоссе будущего с покрытием из такой специальной керамики. Тогда при помощи магнитов, размещенных у нас на поясе или на днище автомобиля, мы сможем волшебным образом парить над дорогой и нестись к месту назначения без всякого трения или потерь энергии.

Эффект Мейснера работает только с магнитными материалами, такими как металлы, Но можно использовать сверхпроводниковые магниты и для левитирования немагнитных материалов, известных как парамагнетики или диамагнетики. Эти вещества сами по себе не обладают магнитными свойствами; они обретают их только в присутствии и под воздействием внешнего магнитного поля. Парамагнетики притягиваются внешним магнитом, диамагнетики отталкиваются.

Вода, к примеру, диамагнетик. Поскольку все живые существа состоят из воды, они тоже могут левитировать в присутствии мощного магнитного поля. В поле с магнитной индукцией около 15 Т (в 30 000 раз более мощном, чем магнитное поле Земли) ученым уже удалось заставить левитировать небольших животных, таких как лягушки. Но если сверхпроводимость при комнатной температуре станет реальностью, можно будет поднимать в воздух и крупные немагнитные объекты, пользуясь их диамагнитными свойствами.

В заключение отметим, что силовые поля в том виде, в каком их обычно описывает фантастическая литература, не согласуются с описанием четырех фундаментальных взаимодействий в нашей Вселенной. Но можно предположить, что человеку удастся имитировать многие свойства этих выдуманных полей при помощи многослойных щитов, включающих в себя плазменные окна, лазерные завесы, углеродные нанотрубки и вещества с переменной прозрачностью. Но реально такой щит может быть разработан лишь через несколько десятилетий, а то и через столетие. И в случае, если сверхпроводимость при комнатной температуре будет обнаружена, у человечества появится возможность использовать мощные магнитные поля; возможно, с их помощью удастся поднять в воздух автомобили и поезда, как мы видим в фантастических фильмах.

Принимая все это во внимание, я бы отнес силовые поля к I классу невозможности, т. е. определил их как нечто невозможное для сегодняшних технологий, но реализуемое в модифицированной форме в течение ближайшего столетия или около того.




Источник: onua.org
Комментировать
Прокомментировать

Связаться с администрацией

Всё самое интересное, что происходит в мире. Интересные статьи о природе, городах, страна. Все новые открытия в науке, медицине, космосе. Забавные факты из истории, интересное об известных людях, а так же много всего интересноего.